Your Home as Doctor: Smart Homes Enable Medical Diagnosis

D. Schreurs KU Leuven, Belgium

Outline

- Motivation
- System Architecture
- Blocks' Design & Experimental Results
- System Design & Experimental Results
- Durability
- Conclusions

Motivation

Observation: ageing population

Source: bbc.com

→ Importance of <u>Ambient Assisted Living</u>

- = long-term health monitoring
 - Fall detection
 - Localization
 - Vital signs monitoring

Approach: Radar WSN

WRSN System Architecture

M. Mercuri, *et al.*, "Analysis of an indoor biomedical radar-based system for health monitoring," *IEEE Trans. Microw. Theory Techn.*, vol. 61, no. 5, pp. 2061-2068, May 2013.

Radar Technologies

type	frequency bandwidth	ranging meas.	Doppler	complexity (& costs)
CW	narrowband	NO	YES	low
UWB IR	UWB	YES	NO	high
SFCW/ FMCW	UWB (& narrow band)	YES	YES	low-medium

Radar Waveform

fism → fall detection
 → vital signs monitoring

SFCW waveform → localization

$$\begin{cases} f_0 = 6 \text{ GHz} \\ N = 40 \\ \Delta f = 25 \text{ MHz} \\ R_{MAX} = 6 \text{ m} \\ \Delta R = 15 \text{ cm} \end{cases}$$

M. Mercuri, et al., "Optimised waveform design for radar sensor aimed at contactless health monitoring," *Electron. Lett.*, vol. 48, no. 20, pp. 1255-1257, 27 Sep. 2012.

Outline

- Motivation
- System Architecture
- Blocks' Design & Experimental Results
- System Design & Experimental Results
- Durability: Energy supply
- Conclusions

Radar WSN

Radar Sensor

M. Mercuri, *et al.*, "Analysis of an indoor biomedical radar-based system for health monitoring," *IEEE Trans. Microw. Theory Techn.*, vol. 61, no. 5, pp. 2061-2068, May 2013.

Antenna Design

- In-door setting = sensor mounted to wall or ceiling
- Antenna design challenges
 - avoid backscattering & crosstalk
 - semi-spherical radiation pattern
 - wideband requirement

ΤХ

Antenna Design

- Ground Plane: backscattering
- Metal Wall: crosstalk (S₂₁)

AMC Based Antenna Design

Design based on Artificial Magnetic Conductor (AMC) layer

- smaller form factor
- no metal wall!

S. Yan, et al., "A low profile dual-band antenna loaded with artificial magnetic conductor for indoor radar systems," IET Radar, Sonar & Navigation, 7 pp., 2015.

AMC Based Antenna Design

	AMC Antenna	Reference Antenna
Size (mm ³)	56×56×3.12	42×36×32
Low Freq. Band (GHz)	2.395-2.485	2.22-2.48
High Freq. Band (GHz)	5.78-8.89	5.8-6.77
Gain (dB) @ 2.45 GHz	5.05	5.7
Gain (dB) @ 6-7 GHz	>7.0	>7.2
FBR (dB) & 2.45 GHz	15	0
FBR (dB) & 6-7 GHz	>11	>7.5
Cross coupling (dB)	<-25	<-25 <mark>(with wall)</mark>

FBR = Front-to-Back Ratio

Monostatic Radar Architecture

Monostatic Radar Architecture

Monostatic Radar Architecture

Base Station

Microcontroller-based

DSP-based

C. Garripoli, et al., "Embedded DSP based Telehealth Radar System for Remote In-door Fall Detection," *IEEE J. Biomed. Health Inform.*, vol. 19, no. 1, pp. 92-101, Jan. 2015.

• IFFT on SFCW baseband signals \rightarrow absolute distances

- **Compensation** → remove 'static' reflections (e.g., furniture, crosstalk)
- Calibration \rightarrow places the target in the right position

Example: Target at 4 m

Reducing backscattering and crosstalk is fundamental!

M. Mercuri, et al., "A practical distance measurement improvement technique for a SFCW-based health monitoring radar," ARFTG Microwave Meas. Conf., Jun. 2013.

Data Processing: Localisation

	Anechoic Chamber			Real Room		
Distance	% Person1	% Person2	% Metal	% Person1	% Person2	% Metal
1 m	100	100	100	100	100	100
2 m	100	100	100	100	100	100
3 m	93.3	96.7	100	90	86.7	100
4 m	93.3	93.3	100	90	83.3	100
5 m	86.67	90	100	76.7	73.3	100

> 30 range profile measurements for each distance and for each target

Data Processing: Fall Detection

Classification approach: LS-SVM-GA

Real-Time Fall Detection

lacksquare

- Sliding window approach = Segmentation
- **Real-time** operation
 - ~316 ms maximum delay

C. Garripoli, et al., "Embedded DSP based Telehealth Radar System for Remote In-door Fall Detection," IEEE J. Biomed. Health Inform., 2014.

Fall Detection: Sensor Positioning

SPEED MEASUREMENTS:

- Sensor fixed to the wall or ceiling
- Falls over different orientations
- 3 subjects

Fall Detection: Sensor Positioning

Falls have an important vertical motion component

Doppler effect limitation

1425

Fall Detection: Sensor Positioning

Angle			CEILING			WALL		
	(°)	Subject 1	Subject 2	Subject 3	Subject 1	Subject 2	Subject 3	
	0	3	3	3	3	3	3	
	30	3	3	3	3	3	3	
	60	3	3	3	0	0	0	
	90	3	3	3	0	0	0	
	120	3	3	3	0	0	0	
	150	3	3	3	3	3	3	
	180	3	3	3	3	3	3	
	210	3	3	3	3	3	3	
	240	3	3	3	0	0	0	
	270	3	3	3	0	0	0	
	300	3	3	3	0	0	0	
	330	3	3	3	3	3	3	

- 3 mimicked frontal falls per target/position

➢ Radar to the ceiling → to overcome Doppler effect limitation

Sensor Positioning: Breathing

Person Sitting on a Chair

Sensor Positioning: Breathing

Vital Signs Monitoring

Outline

- Motivation
- System Architecture
- Blocks' Design & Experimental Results
- System Design & Experimental Results
- Durability
- Conclusions

Radar WSN

Wireless Radar Sensor Network

- Challenges: synchronization & avoiding interference
 - Radar operation

Speed: FDM among radar sensors

- Localisation: TDM
 - \rightarrow one sensor at a time
- Wireless communications
 TDM: Zigbee and radar sensing
 TDM: 4 ms delay among sensors

→ THE SENSORS VIRTUALLY OPERATE AT THE SAME TIME!!!

Experimental Setup

Localisation

Errors within the radar resolution of 15 cm!

Experimental Setup

Experimental Results

Fall Detection

- Fall is not detected by Sensor 2
- Multiple sensors expand
 coverage range and
 improve detection
 reliability!

Outline

- Motivation
- System Architecture
- Blocks' Design & Experimental Results
- System Design & Experimental Results
- Durability: Power supply
- Conclusions

Smart Homes: Durability

Power needs

Sensor	Power consumption	(order of magnitude)
Zigbee node	40 mW	
Temperature sensor	0.5 mW	
IR motion detector	0.3 mW	
Biomedical sensor	> 100 mW	

Smart Homes: Energy Needs

Power consumption radar sensor

- using off-the-shelf components:
 - wireless communications (Zigbee): 40 mW
 - radar sensing: >100 mW
 - microcontroller: 100 mW
- using dedicated chip design: 50 mW 100 mW expected

Smart Homes: WPT?

Challenge: Single antenna @ Sensor Node

순데이는 것으로

Regulations

Frequency Bands for Non-Specific Short Range Devices in Europe

Frequency Band	ERP	Duty Cycle	Channel Bandwidth	Remarks
433.05 – 434.79 MHz	+10 dBm	<10%	No limits	No audio and voice
433.05 – 434.79 MHz	0 dBm	No limits	No limits	≤– 13 dBm/10 kHz, no audio and voice
433.05 – 434.79 MHz	+10 dBm	No limits	<25 kHz	No audio and voice
868 - 868.6 MHz	+14 dBm	<1%	No limits	
868.7 - 869.2 MHz	+14 dBm	< 0.1%	No limits	
869.3 - 869.4 MHz	+10 dBm	No limits	< 25 kHz	Appropriate access protocol required
869.4 – 869.65 MHz	+27 dBm	< 10%	< 25 kHz	Channels may be combined to one high speed channel
869.7 -870 MHz	+7 dBm	No limits	No limits	
2400 - 2483.5 MHz	+7.85 dBm	No limits	No limits	Transmit power limit is 10-dBm EIRP

Ref: Electronic Communications Committee

Single base station is not feasible

①

MISO WPT

MIMO WPT

WPT & Data Receiver

T.J. Lee, masterthesis, KU Leuven, 2016.

Experimental Results

- Modulation scheme such that received symbols are clear
- Received data signal is based on baseband intermodulation products of multisine RF excitation

Conclusions

Wireless radar sensor networks:

= viable technology for Smart Homes!

